MENU
SRI-ONLINE.ORG
Publications

News Feed: ScienceDaily - Stem Cell News

Hidden messages in protein blueprints
Scientists have identified a new control mechanism that enables stem cells to adapt their activity in emergency situations. For this purpose, the stem cells simultaneously modify the blueprints for hundreds of proteins encoded in the gene transcripts. In this way, they control the amount of protein produced and can also control the formation of certain proteinisoforms. If this mechanism is inactivated, stem cells lose their self-renewal potential and can no longer react adequately to danger signals or inflammation.

Stem cells and nerves interact in tissue regeneration and cancer progression
Researchers show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumor innervation could thus lead to new cancer therapies.

Immunotherapy using 'young cells' offers promising option against cancer
A new study suggests that the age of certain immune cells used in immunotherapy plays a role in how effective it is. These cells -- natural killer (NK) cells -- appear to be more effective the earlier they are in development, opening the door to the possibility of an immunotherapy that would not utilize cells from the patient or a matched donor. Instead, they could be developed from existing supplies of what are called human pluripotent stem cells.

How skin cells prepare to heal wounds
Researchers have published the first comprehensive overview of the major changes that occur in mammalian skin cells as they prepare to heal wounds. Results from the study provide a blueprint for future investigation into pathological conditions associated with poor wound healing, such as in diabetic patients.

New technique 'prints' cells to create diverse biological environments
With the help of photolithography and programmable DNA, researchers have created a new technique that can rapidly 'print' two-dimensional arrays of cells and proteins that mimic a wide variety of cellular environments in the body. This technique could help scientists develop a better understanding of the complex cell-to-cell messaging that dictates a cell's final fate.